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Abstract.

“Non-Gaussian” is the casual explanation often given for anything un-
expected in an astronomical time series. What better place to look for
non-Gaussianity, therefore, than in the light curve of 09574-561, the gravita-
tional lens that, until recently, had yielded frustratingly inconsistent deter-
minations of its lag. We discuss the difficulties in measuring deviations from
Gaussianity in weakly nonstationary processes (such as 1/ f noise or random
walk) and define a restricted set of “well-behaved” three-point statistics.
An important special case of such a well-behaved statistic is the skew of a
linear combination of the data, with coeflicients summing to zero. Analytic
and Monte Carlo calculations evaluate the performance of such a statistic
in the case of a non-Gaussian “wedge model” (shot noise, with each shot
having a rapid rise and slow decay). We find that even for as well studied
an object as 09574561, the detectability of any deviation from Gaussian is
problematical at best. At present, one can rule out a wedge model only if
the individual shots are as infrequent as one in 10-20 days.

1. Introduction

By now it is well established, most recently and definitively by Kundic et al.
(1996, hereafter “K96”), that the time delay of the lensed quasar 09574561
is around 420 days, confirming previous determinations by Vanderriest et
al. (1989); Pelt et al. (1996), who used data by R. Schild and D. Thomson;
and others. Not surprisingly, it is a matter of concern to the present authors
that the longer values, around 540 days, obtained by Press, Rybicki, and
Hewitt (1992a,b, hereafter “PRH”), using a method based on unbiased
Wiener filtering (details in Rybicki and Press 1992, hereafter “RP”) has
proved to be wrong.
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We still know of nothing wrong with the method described in PRH and
RP. Indeed, when applied to the new data of K96, the method readily finds
the (correct) 420 day delay; in this we confirm the independent analysis
reported in K96. Furthermore, the method is known mathematically to be
in some sense optimal for data generated by a Gaussian process. Extensive,
and successful, Monte Carlo simulations were also reported in PRH. So,
it is something of a mystery why PRH failed, rather flamboyantly, on the
09574561 data sets that were originally tried.

In situations like this, the epithet “non-Gaussian” is frequently heard.
Indeed it is well known that the application of methods validated (by the-
orem or Monte Carlo) on Gaussian processes to non-Gaussian ones can
sometimes lead to wrong answers — though, more often, to correct answers
but underestimated error bars. The present situation thus gives us a good
excuse for thinking about how to measure or characterize non-Gaussianity,
and an occasion to search for non-Gaussianity in the 09574561 light curve.

2. The Kundié et al. Data Set

K96 reports the results of two seasons’ observations of 09574561 A B. Since
lens component B is delayed, one effectively gets a free third season of light
curve for the underlying quasar. We have used the method described in RP
(1) to bring the A and B components to a common flux scale (undoing the
lens magnification ratio), and (2) to construct an optimal reconstruction
of the light curve, along with error bars on the optimal reconstruction.
Figure 1 shows the K96 data points, with measurement uncertainties, and
the reconstruction and its 1-o error range. Note that the error properly
balloons out in the interseasonal gaps, and is properly smaller than the
individual measurement errors when the density of measurements is large
enough to allow, in effect, the averaging of nearby points.

The sharp drop that occurs around JD 2449700, first reported by Kundié
et al. (1995), is the feature that makes the 420 day time delay as unam-
biguous as one might like. One might be tempted to guess that a feature
like this is evidence of non-Gaussianity, i.e., is unlikely in a purely Gaussian
process with the time spectrum (or correlation function) of 09574-561. But
how is one to know quantitatively whether this is the case?

The simplest possible question, and also the question that involves the
lowest-order moment (or cumulant) that can deviate from Gaussianity, is to
ask: Is there any statistically sound evidence that the light curve in Figure 1
is time-asymmetric? For example, can we substantiate that the data favors
rapid declines (and more gradual increases) over rapid increases (and more
gradual declines)? This question can in principle be answered by a three-
point statistic,
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Figure 1. Light curve of 09574561 in arbitrary flux units (g band). The data points
and errorbars derive from Kundi¢ et al. (1996). The heavy curve is the unbiased Wiener
optimal reconstruction. The light curves are the 1-¢ error range of the reconstruction.

If we fail to find time asymmetry, the next obvious question will be: Are
the declines and increases both sharper (or less sharp) than predicted by a
Gaussian process. This question can only be answered by a statistic that
probes four-point behavior. As we shall see, it is correspondingly harder to
answer with limited data.

3. Weakly Nonstationary Processes

We face the handicap that the 0957+561 light curve, like that of most
quasars, is a “weakly nonstationary” process, in the sense that its power
spectrum diverges at low frequencies f faster than 1 /f. This, we will see
below, renders most standard three-point statistics inapplicable or unre-
liable, and gives our problem a different cast from previous searches for
time-asymmetry in astronomical time series (e.g., Weisskopf et al. 1978).

Suppose we measure some process h(t) for only a total time 7', and
then estimate its mean h by some average of the measured values. Using
Parseval’s theorem and the convolution theorem, it is easy to show that the
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variance of h around its apparent mean is

o0

(h=R2)~ [ P(f)df (1)

2w /T

where P(f) is the power spectrum. If the integral diverges as T is increased,
then the variance diverges. Operationally, one would find no tendency for
the estimates h to converge as T increases. We should regard the mean of
a process with divergent variance as “unknowable or infinite”.

If we parametrize the low-frequency power spectrum by a single expo-
nent g,

P(f)~f* (2)

then a process is weakly nonstationary for 1 < 8 < 3. Quasars and AGNs
usually have 3 in the range of about 1.5 to 2. The case § = 1 is called “1/f
noise”, while 8 = 2 characterizes a random-walk process.

One easily relates this parametrization of the power spectrum to an
equivalent model for the autocorrelation function or structure function. If
the correlation decays as a power law in lag,

(R((t +7)) = B — sbrf=! (3)

for some constants B, b, and 3, and in some range 0 < T < Tpqz, SO that
the structure function is

([t +7) = B(£)?) = brP-1 (4)

then the Wiener-Khinchine theorem gives (in an appropriate range of fre-
quencies)
(2m f)P

for 1 < f < 3, showing that the §’s in equations (2), (3) and (4) are indeed
the same parameter. Notice, for later comment, that a structure function
that increases linearly with 7, 8 = 2, corresponds to a random walk power
spectrum.

P(f) =

4. “Well-Behaved” Three Point Statistics

Given a set of measured values y; = y(¢;), ¢ = 1,..., N, the most general
three-point statistic that we can write is
S =" oujkyiyive (6)

ik
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for some particular choice of the three-index kernel a;j;. Indeed, one can
regard all three-point higher order statistics, or estimators of such statistics
over a data set, as being simply particular choices for a;;;. Without loss
of generality, one can take a;j; to be symmetrical on all its indices, since
in equation (6) it is contracted with a symmetrical combination of y’s. All
statistics like this vanish (in expectation value) for a Gaussian process of
zero mean, so a statistically significant nonzero value is always evidence of
non-Gaussianity. However, different ones of these statistics can have vastly
different wvariances when applied to a purely Gaussian signal. It is this
statistical variance that limits the sensitivity of any particular statistic in
distinguishing a Gaussian from a non-Gaussian process, especially, as we
now show, for weakly nonstationary processes.
Starting with equation (6), we can write

V&I‘(S) = <S2> = Z QijkUlmn (yiyjykylymyn> (7)
ijkimn

For a Gaussian process, the expectation value of the sixth order product
is equal to the sum of 15 terms, each the product of three second order
products and each with coefficient unity. If the y;’s have the autocorrelation
given by the model equation (3), then it is not hard to show that the sixth
order expectation has the form

(VY Ve WiYm¥n) = 15B% — 3B%[bij + bix + more terms ]
+B[bribymn + many more terms | + 0% (8)

Recall now that for a weakly nonstationary process the value B (total
variance) is infinite. So, we’d better try to choose ;s such that the terms
of order B3, B?, and B exactly cancel. Remarkably it is possible to do just
this. The condition on the a;;i’s that results is

> aije = > ik = > aijr =0 (9)
5 3 k

An important special case is where the a;;)’s are the sum of a number
of “rank one” symmetric pieces,

Qi) = Zaq’yqi’yq]"qu, with 0= Z’yqi for all ¢ (10)
q B

Here there can be any number of terms indexed by ¢, and the resulting

statistic S is .
S = Zaq (Z ’Yqz'yi) (11)
q i
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Figure 2. Basic shape for a shot-noise model with wedge-shaped “shots”. The process
is the sum of shots occuring at Poisson-random times with some rate v. This process is
time-asymmetric and has a nonzero expectation for three-point statistics.

which is something like an estimator of the skew of a set of linear combi-
nations of the data, each combination with coefficients summing to zero.
(Although we present this as a special case of equation (9), we conjecture
that this is actually the most general case, if there are a sufficient number
of terms indexed by q.)

A further specialized case of this statistic is amenable to some analytical
calculation in an instructive model case, which we will next do.

5. The Wedge Model

Although we can compute the variance of a statistic like equation (11) in
the presence of Gaussian noise, we can’t compute its expectation value in
the presence of a non-Gaussian process — unless we have a specific model
for that process. Let us take as such a model a shot-noise process with
wedge-shaped shots of infinitely rapid rise and slow (extending over a time
7) decay. For simplicity all shots have the same amplitude a. They occur
Poisson randomly at a mean rate v.

For any shot-noise process with shot shapes ¥(s), the autocorrelation
function and structure function can be shown to be

¢(1)

Sa(t)

i

((h(s) = B)(h(s + 1) = B)) = v / ds (s + t)p(s)  (12)
([h(s +1) = B(s)2) = 2C(0) - C(1)] (13)

while the skew of a lagged difference (a statistic of the form of equation
(11), not coincidentally) can be shown to be

Sa(0) = ([h(s +1) =AY = 3v [ ds e+ s)p(s)b(s) ~ (2 + 5)] (14)
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For the wedge-shaped shots of Figure 2, one can do the integrals, yield-
ing

c) = azwé (1— ;)2 <1+ ;—T> (<) (15

@t (1 - ;)2 <1 4 %) (4| < 7) (16)

with C(t) = S3(t) = 0 for [t] > 7. It'is also instructive to give the results to
lowest order in ¢/7 for t € 7, and also to include the effect of a Gaussian
measurement error o (assumed constant) for each measured value of y(1):

53(t)

Sy(t) = a’vt + 20% = V't + 202, S3(t) = a®vt (17)

(Being Gaussian, o contributes nothing to S3.) Notice the linear increase
of the structure function Sy(t) with time. This shows that, for times ¢t < 7,
the wedge model has the two-point statistics of a random walk (close to
what is actually observed in 0957+561). We define V' = a’v since only
this combination, and not a or v separately, is observable in any two-point
statistic.

The nondimensional skew, formed from Sy(t) and S3(t) is

S3(t) a’vt 1
= — — 1
Skew S2(1)372 ~ (aut + 202312~ (vt)i/2[1 + 202/ (V/L)]3/? (18)

Notice that the skew goes linearly to zero at small lags t, because it is lost
in the measurement error ¢, and also goes to zero and large lags, inversely
with v/vt, the mean number of shots that occur in one lag time, an example
of the central limit theorem in action.

A more elaborate calculation is required, however, to determine the
detectability of the the skew: we need to know not only its expected value,
but also its variance. For a specific calculation, we need also to define how
the averaging in equation (14) is to be done. To this end, let A(s,t) =
y(s +1t) — y(s), and

o T
Soll) = % /0 A¥(s, 1)ds (19)

where “hat” denotes an estimator and T is the total length of observation.
This is an idealized model, because it replaces the finite set of data points y;

with a continuous observable y(t); we will comment further on this below.
We now calculate

Var($3(1)) = -1}—2 /0 ' /0 " dudv (A%, 1)8%(v, 1)) (20)
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Making the approximation that we can factor the sixth order moment as if
it were Gaussian (essentially the central limit theorem), a lengthy calcula-
tion gives

2\ 2 :
Var(S5(1)) = 3\/5%(1/%)3 {3 (1 + %) + 1] (21)

Now combining equations (17) and (21), we get the “detectability of the
skew” (or of 53) measured in standard deviations,

Skew 1 1 <§>1/2 1 22)
\/ Var(Skew) T 3014 (vt)1/2 \ ¢ 1+202/(V'")

Interestingly, this does not go to zero for small ¢, but is rather monotonically
decreasing with increasing ¢, with maximum value

VI

1/2

0.140(Tv)"/ — (23)
at ¢ = 0. The reason that ¢t = 0 is preferred here, but not in equation (18),
is our assumption, above, of continuously measurable data, so that y(¢) can
be estimated much more accurately than the o of a single measurement.
We will see now that this assumption is actually not too bad for the K96
data set!

6. Application to 09574561

From the K96 data, all of the quantities in expression (23) are known except
v: T ~ 400 days (total length of observation, exclusive of the interseasonal
gaps), o ~ 0.01 (that is, measurement accuracies of about 0.01 mag), V/ =
2 x 107° day~?! (estimating the structure function from the data). Setting
expression (23) to 2 for a 2-o detection, we find that the wedge model’s
skew should be evident in the data only if the mean rate of shots is less
than about 0.08 day™!, i.e., less than one shot every 12 days — even though
the data set’s observations are typically only a day or two apart. This is
sobering, and shows the inherent difficulty of detecting non-Gaussianity in
noisy data, even several seasons of astronomically high quality.

To see whether these analytic estimates, which involved a number of
idealizations, are correct, we have performed Monte Carlo simulations, as
follows:

First, we generate many synthetic realizations of the 09574561 data,
each with the same times of observation and measurement errors as the
actual K96 data set, and each drawn from a distribution with the same
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Figure 3. Results of Monte Carlo experiments comparing the skew of “wedge” and Gaus-
sian models with the same 2-point properties as the 0957+561 actual data. Dotted and
dashed curves are percentile results of many realizations. At small lags the wedge model
with a rate v = 0.0625 day™' (lower panel) is easily distinguished from Gaussian, while
the wedge model with a rate » = 0.25 day™" (upper panel) is not. The solid curve (both
panels) is derived from the K96 data for 09574561, and is clearly not distinguishable
from the Gaussian model. The lower panel wedge model is ruled out by this data.

two-point statistics (correlation function or power spectrum) as the K96
data. Some realizations are generated as a purely Gaussian process, while
others embody the “wedge model” already described. In the latter case,
we always take 7 = 200 days for the decay time (our results are highly
insensitive to this parameter), but we try several different values of v (the
mean rate).

Second, for each realization (and for the actual data also) we apply
the machinery described in PRH and RP to get an unbiased Wiener fil-
ter reconstruction of the underlying light curve as a continuous function
(conceptually at least), and its error bars.

Third, we estimate the skew of the diffe/rgnce of this continuous function
at various lags ¢, essentially the statistic S3(t)/S2(t)%/? of equation (19). (A
slight modification is that we use the reconstruction error bars to de-weight
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Figure 4. Three Monte-Carlo realizations, along with the actual 09574561 data. The
realizations all have times of observation and measurement errors identical to the ac-
tual data, and have the same two-point statistics as the data. One realization is purely
Gaussian. The other two are “wedge models” with respective rates of 0.25 day~! and
0.0625 day ™. The statistical test described in the text easily identifies the latter process
as non-Gaussian. Can the reader tell which is which? [Answer in text.]

strongly lags with ends that fall in the interseasonal gaps in the data.)

Fourth, after accumulating many synthetic realizations for each choice of
parameters, we plot the percentile confidence intervals of the skew statistic
as a function of lag t. For the actual data we simply plot, on the same scale,
its skew statistic.

Results of this procedure for the Gaussian case and wedge models with
two choices of v, are shown in Figure 3. One sees that at large lags, the
wedge models are indistinguishable from Gaussian (identical percentile in-
tervals). At small lags, their non-Gaussianity is to some extent detectable.
For v = 0.25 day—! the detectability is not certain, since there is substantial
overlap of plausible confidence intervals. For v = 0.0625 day~!, however,
the detectability is quite reliable since (e.g.) the 95% percentile curve of
the Gaussian model reaches only to the 5% curve of the wedge model. In
general, the Monte Carlo results substantiate the analytic estimate of equa-
tion (22). This shows that the K96 data is dense enough in time that the
analytic assumption of a continuous function was justified.
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Thus for detectability; now, what about actual detection in the real
data? One sees that, for all lags, the skew of the actual data is definitively
within the range of a Gaussian model, and at or outside the 5% confidence
bound for the triangle models for all lags less than 20 days (v = 0.25 day~!)
or 30 days (v = 0.0625 day™!). These models are thus excluded at the 5%
level. Indeed at small lags, where a skew signal should be strongest, the
data is (coincidentally) at the 50% percentile of the Gaussian model. We
should note that while the wedge model makes zero lag (¢t = 0) the most
sensitive indicator, a model with a finite rise time would suppress the skew
statistic for times smaller than that rise time, so the exclusion of wedge
models at finite lag also serves to exclude models with finite rise times.

Notice that the time-reversed models, with slow rise and rapid quench-
ing (for which the dotted curves in Figure 3 would be flipped in sign),

are less strongly excluded. We doubt that this is in any way significant,
however.

7. Conclusions

Non-Gaussianity, even when quite extreme (as in the wedge model) can be
quite hard to detect in data of quantity and quality comparable to K96
— which, by astronomical standards, is very good data indeed! Of course,
one can get lucky: a single 20-o0 flare in the data would be definitively non-
Gaussian. Teasing non-Gaussianity out of a signal that is starting to satisfy
the central limit theorem (shot noise, e.g.) is what is difficult. If you still
don’t think so, look at Figure 4, which shows typical realizations of the
processes already described. [Answers: the upper-left panel is Gaussian;
upper-right is actual data; lower-left is a wedge model with v = 0.0625
day~! (easily detectable by the statistic discussed in this paper); lower-
right has v = 0.25 day~! (not so easily detectable).]

The detectability of such non-Gaussianity increases only slowly with
total observing time 7', as the square root; but it can increase rapidly with
decreasing measurement errors o (cf. equations 18 and 22). However there
is an minimum o, with ¢? ~ V't, after which further improvement is small.
For 09574561, this minimum o is about 0.003,/fqays magnitudes, for lag
times t.

Although we have treated only the 3-point skew here, it is clear from
rough analytical calculations that analogs of equations (18) and (22) also
hold for higher order statistics, e.g. kurtosis; these have less-favorable coef-
ficients, and also higher powers of 1 +202/(V't) in the denominators. Skew
(if it exists in the data) is in some sense the most detectable non-Gaussian
statistic.

Although the limits are not very impressive, the K96 data, with the anal-
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ysis of this paper, does rule out some shot-noise models for the 0957+561.
At the 5% significance level, models with shots that have rise times of less
than about 10-20 days, and mean shot rates of less than 0.25 day™!, are
excluded.
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